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Background. Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous
functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of
millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic
interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses
regarding specific gene functions and associations. Methodology/Principal Findings. We report a significantly improved
version (v. 2) of a probabilistic functional gene network [1] of the baker’s yeast, Saccharomyces cerevisiae. We describe our
optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training
reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic
interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships.
Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal
subunit biogenesis. Conclusions/Significance. YeastNet v. 2, constructed using these optimizations together with additional
data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among
5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.
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INTRODUCTION
Gene networks provide a simple basis for organizing thousands of

cellular components and their associations with each other, as well

as for generating testable hypotheses about the components and

the system as a whole. A number of research efforts have

demonstrated that heterogeneous functional genomics and

proteomics data can be integrated into gene (or protein) networks

(e.g., [1–12]), thus organizing and relating highly complex data

sets, as well as simplifying the prediction of new gene functions and

associations on basis of the network connections. In such network

integration approaches, relationships between genes are detected

by various experimental or computational methods, and then

combined in a bottom-up fashion in order to build a network

model. As high-throughput biological experiments advance, we

expect corresponding gains in network models derived from these

data. Such improvements, however, are often tempered by the

already extreme and growing complexity of the biological data.

There are three major problems in integrating diverse genomics

data into network models. First, the genomics data are

heterogeneous in their sensitivity and specificity for relationships

between genes. For example, experimental methods such as mass

spectrometry preferentially observe abundant proteins, while

comparative genomics methods apply only to evolutionarily

conserved genes. Increasing the sensitivity of detection usually

carries a cost of increasing false positive identifications. Thus, the

systematic bias for each method should be understood and

considered during data integration. Second, genomics data sets

vary widely in their utility for reconstructing gene networks. Thus,

we need robust benchmarking methods that can evaluate each

data set and allow comparison of their relative merits. Third, data

sets are often correlated, complicating integration. However, the

correlation can be difficult to measure because of both data

incompleteness (a common problem) and sampling biases.

Probabilistic functional gene networks represent a class of gene

network models that attempt to solve these problems, allowing

integrative network models to be built from heterogeneous

genomics data (e.g., [1,3,8,10–13]). One key idea of such network

models is the reinterpretation of genomics data as providing

evidence for ‘‘functional coupling’’ between genes [1]. This non-

mechanistic, but nonetheless useful, high level notion of gene

association enables the integration of many different types of data,

capturing diverse types of associations (e.g., direct physical

interactions, regulatory interactions, membership in the same

physical protein complex, etc.) precisely because the definition of

gene association is inclusive. Such associations can be discovered

using Bayesian statistical methods which allow robust evaluations

to be made of functional associations between genes in

a supervised learning framework, such as by measuring known
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pathways and cellular systems for their recapitulation by the data

sets being analyzed. We previously reported such a probabilistic

genome-wide gene network for yeast genes (dubbed YeastNet v.1)

[1].

Here, we present optimized methods that improve our

probabilistic functional gene network models. Table 1 sum-

marizes the major improvements. In particular, optimization of

three major areas is highlighted, illustrating their effects on

network quality. First, we reduced functional bias toward the

dominant gold standard reference annotation during training.

For example, most yeast gene functional annotation sets show

biases towards genes of ‘‘protein biosynthesis’’ or ‘‘ribosomal

proteins’’ [14,15]. This bias inflates scores in a manner that does

not generalize for other functions. Second, we apply a simple

probability model for calculating confidence in protein physical

interaction and genetic interaction data sets. We find the

hypergeometric probability of an interaction occurring at

random chance provides an excellent error confidence model

for the interactions and simplifies their integration. Third, we

introduce two thresholds that significantly improve the derivation

of functional linkages from DNA microarray experiments. The

combination of these improvements with additional data results

in a markedly improved overall yeast gene network, spanning

95% of the validated yeast protein-coding genes. We demon-

strate the network topology is predictive of essential genes, and

apply the network to predict, then experimentally confirm, the

function of the yeast gene PUF6 in 60S ribosomal subunit

biogenesis.

RESULTS AND DISCUSSION
We incorporated three major improvements to the yeast

probabilistic gene network, beyond inclusion of additional data

sets: the reduction of bias in the reference training set, the

introduction of probabilistic scores for physical and genetic

interactions, and the introduction of filters to remove false-positive

linkages from analysis of mRNA co-expression. We first discuss

each of these improvements in turn, before demonstrating the

overall quality of the network.

Effect of a functionally biased reference set in

learning a gene network from functional genomics

data
The derivation of a probabilistic functional network from functional

genomics and proteomics data using the log-likelihood strategy is an

example of a supervised learning approach, distinguishing positive

functional associations from negative associations on the basis of the

performance of training associations in the data sets under analysis.

The learning efficiency, however, is contingent upon the quality of

the reference training sets, although the algorithms we employ are

chosen for their robustness to false examples in the references.

Learning efficiency also correlates with the extent of reference

examples, as we cannot learn effectively using only a few examples. A

third important characteristic of reference sets affecting supervised

learning is the systematic bias among examples. In agreement with

previous observations of yeast gene annotation [15,16], we found

that this last issue in particular was important for reconstructing

a functional yeast gene network.

The most comprehensive and reliable functional annotation

currently available for yeast is the Gene Ontology [17] annotation

set. More than 70% of validated yeast protein-encoding genes are

annotated by at least one of over 1,000 Gene Ontology ‘‘biological

process’’ terms with support derived from reliable small-scale experi-

mental evidence. Therefore, yeast Gene Ontology ‘‘biological

process’’ annotation meets the first two requirements of a good refer-

ence set for efficient learning. However, the frequency distribution of

annotation terms is heavily biased toward the single term ‘‘protein

biosynthesis’’ (GO:0006412). This term alone is responsible for

.27% of the total reference gene pairs (Figure 1A). We observed

a similar bias in another widely used annotation set, The Kyoto

Encyclopedia of Genes and Genomes (KEGG) [18] (data not shown).

There are many possible reasons for such biased annotation,

ranging from bias in scientific interest—yeast has historically been

a major model for studying many core cellular processes including

eukaryotic protein biosynthesis—to bias in technological feasibil-

ity—it is generally easier to study highly expressed proteins such as

ribosomal proteins—to intrinsic bias in the cellular system

Table 1. A summary of major improvements to YeastNet version 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

YeastNet v1 (Science 2004) YeastNet v2 (This study)

34,000 linkages among 4,681 genes 102,803 linkages among 5,483 genes

Trained by KEGG pathway annotation Trained by Gene Ontology biological process annotation

Training set includes linkages among biased term ‘‘Ribosome (KEGG:03010)’’ Training set excludes linkages among biased term ‘‘Protein biosynthesis
(GO:0006412)’’

Two new genome-wide complex mapping studies (Gavin et al. 2006, Krogan et al.
2006) were incorporated

Probabilistic error model used to score functional linkages inferred from protein-
protein interaction data

Functional linkages inferred from ‘‘Gene neighbors’’ method were added

Genome-context approaches (Phylogenetic profiling, Rosetta Stone proteins)
with 57 genomes

Genome-context approaches (Phylogenetic profiling, Rosetta Stone proteins, Gene
neighbors) with 149 genomes

Optimized methods inferring co-expression linkages including exclusion of gene pairs
with potential cross-hybridization of cDNA and using two threshold parameters

Integration by weighted-sum with exponentially decaying weights for
secondary evidence, optimized by one free parameter (D) determining decay
rate

Integration by weighted-sum with linearly decaying weights for secondary evidence,
optimized by two free parameters—D determining decay rate and T determining
threshold of likelihood scores

Over-fitting was tested by independent annotation sets. Over-fitting was tested by 0.632 bootstrapping

Additional functional linkages were inferred from network context
(ContextNet)

Network context linkages did not improve network model, and were therefore
omitted

doi:10.1371/journal.pone.0000988.t001..
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themselves—core molecular machines such as the ribosome

legitimately incorporate more genes than many other cellular

systems. We suspect that such bias is inevitable; nonetheless, we

need to minimize its adverse effects for network reconstruction.

We examined the consequences of this bias by ‘‘masking’’ this

dominant term in the annotation reference set, thereby removing

all reference gene pairs linked via this term, and then testing data

sets for their performance on the full and masked reference sets.

For example, mRNA co-expression relationships between yeast

genes across various heat-shock treatments [19] appear to strongly

predict functional associations when benchmarked using the full,

biased reference set (Figure 1B, open circles). However, that

strong relationship largely disappears after masking only the single

reference term ‘‘protein biosynthesis’’ (Figure 1B, closed circles).

This observation clearly indicates that the strong functional

associations derived from co-expression over these particular

arrays are limited largely to protein biosynthesis genes. Thus,

assigning a high likelihood score for gene pairs that co-express

highly but are not in protein biosynthesis would be misleading.

Examination of the frequency distribution of reference set gene

pairs (Figure 1A) shows that the next most dominant term (‘‘Cell

wall organization and biosynthesis’’, GO:0007047) accounts for

,5% of reference pairs, with contributions from remaining terms

decaying fairly smoothly. We therefore removed only the

dominant ‘‘protein biosynthesis’’ term before reconstructing the

probabilistic yeast gene network.

Probabilistic inference of gene functional

associations from physical protein-protein

interactions and genetic interactions
Because of the generally strong correlation between protein

physical or genetic interactions and functional associations, a map

of such interactions among proteins is an invaluable source for

learning about protein functions and pathways. Among many

techniques of mapping protein physical interaction, yeast two

hybrid assays and affinity purification followed by mass spectrom-

etry have proved to be the most popular for their scalability. Two

major genome-scale yeast two hybrid screens reported more than

4,000 binary interactions [20,21]. While these interactions passed

minimum quality criteria, we might not expect all to be equally

informative for inferring functional associations. The original

confidence measures—dividing interactions into a more repro-

ducible ‘‘core’’ set and less reproducible ‘‘non-core’’ set [20]—is

coarse-grained and may often miss functionally informative

interactions.

Mass-spectrometry-derived interaction data, usually provided as

a list of baits of affinity purification and their identified preys, is

even more complicated for inferring binary physical or functional

associations. Two different models of inferring binary interactions

from the lists of identifications have been widely used—the spoke

and matrix models [22]. The spoke model allows pair-wise

relationships only between baits and preys in the same complexes,

whereas the matrix model includes additional relationships

inferred by pairing preys in the same complexes. These

interpretative models exhibit different trade-offs between com-

pleteness and accuracy—the spoke model achieves high accuracy

at the cost of incompleteness, whereas the matrix model provides

a more complete model but relatively low accuracy due to pairing

all prey proteins from a given bait with each other.

A probabilistic model of protein-protein interactions should

bypass the limitations of these coarse descriptive models, while

providing higher resolution scoring important for data integration.

We found that calculating the hypergeometric probability of the

protein interactions occurring at random chance in a given data

set generates a very well-behaved ranking of interaction accuracy

Gene Ontology biological process terms (1067 terms)
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Figure 1. The effect of functionally biased Gene Ontology annotation on network training. (A) Frequency histograms of the usage of 1,067 Gene
Ontology ‘‘biological process’’ annotations, ranked by the number of genes annotated with each term (black bars) and by the number of reference
linkages derived using that term (white bars). Functional annotation is highly biased towards genes with the term ‘‘protein biosynthesis’’. This
functional bias becomes more severe in the reference linkages, given the combinatorial increase after linking all genes sharing a given term. As
a result, linkages among protein biosynthesis genes compose .27% of total reference linkages. By contrast, the second most frequent term accounts
for ,5% of total reference linkages. (B) The likelihood of functional association between genes on the basis of the co-expression of their mRNAs
across DNA microarray experiments (here, following heat-shock [19]) is significantly affected by the dominant reference term ‘‘protein biosynthesis’’.
For example, for the 1,000 most strongly co-expressed gene pairs, the likelihood of functional association between co-expressed genes is ,30 fold
higher than random chance (LLS,3.4) (empty circles), but drops to ,6 fold (LLS,1.8) after masking the term ‘‘protein biosynthesis’’ in the reference
set (filled circles). Thus, the high likelihood score from the biased reference set cannot be generalized to other functions. The black and red lines
indicate sigmoid curve fits to the unbiased and biased reference analyses, respectively.
doi:10.1371/journal.pone.0000988.g001
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in recall-precision analyses (Figure 2A&B). Note that this

approach does not require training—instead, confidence is based

only upon observations in the experiment under analysis and

reflects the specificity with which a particular protein pair

interacts, down-weighting promiscuous interactors and rewarding

well-observed specific interactions. This scoring scheme outper-

forms the spoke model and attaches confidence values to each

interaction in the matrix model, thereby separating high and low

confidence matrix model interactions (Figure 2A&B). The

hypergeometric score appears to work equally effectively for yeast

two-hybrid and mass spectrometry interactions.

Interestingly, we also observed the hypergeometric probability-

based confidence scores to effectively rank genetic interactions

according to their utility for functional inferences (Figure 2C).

Considering the likely low false positive rate of genetic interactions,

this ranking probably does not reflect differences in the quality of

interactions. Instead, it likely reflects the specificity of the genetic

interactions, as each gene can participate in a varying number of

genetic interactions and span a wide range of biological pathways

[23]. For example, the yeast Hsp90 chaperone HSP82 is

considered to be a genetic capacitor genetically interacting with

many (289) genes from diverse cellular processes, and may

generically buffer phenotypic variation [24]. Since HSP82 is

a global modulator, the genetic interactions in which it participates

only allow for weak function inferences. Therefore, the appropri-

ate interpretation for the low precision observed for interactions

involving HSP82 is probably not that of false positives, but rather

promiscuous interactions. Genetic interactions have been pre-

viously classified into within-pathway and between-pathway

interactions [23,25]; the hypergeometric probability model

appears to rank within-pathway interactions above between-

pathway interactions, thereby increasing the utility of genetic

interactions for inferring functional associations between genes.

Optimized method of inferring functional links by

co-expression analysis
For inferring functional linkages from DNA microarray evidence,

we employ the divide-test-integrate approach [1] for discovering

functionally informative cases of mRNA co-expression. This

method is in contrast to simply concatenating the results of all

DNA microarray experiments to create a single, monolithic

expression vector for each gene, then measuring correlation

between these vectors. A co-expression network derived in this

manner indeed shows a robust correlation between the extent of

expression correlation and the degree of functional association, in

part because of its high dimensionality. However, it generally

works as a useful model only for limited groups of genes, such as

consistently co-expressed housekeeping genes. The problem facing

this method is that context-specific co-expression patterns evident

in only a subset of experiments are overwhelmed by stochastic or

uncorrelated expression changes across the remaining experi-

ments. For example, consider the case of combining several

experiments designed to detect expression dynamics during heat

shock with a large number of unrelated experiments. Linkage

between genes that respond coordinately under heat shock but not

in the remaining experiments are unlikely to be detected in an

analysis of the monolithic expression vectors. In contrast, linkages

among these genes might be detected by the divide-test-integrate

approach, in which each group of biologically coherent experi-

ments is analyzed separately for co-expression linkages, followed

by integration of linkages across the sets of experiments. However,

its actual practice often entails increased false positive co-

expression linkages because of lower dimension expression vectors
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Figure 2. Assigning confidence scores to physical or genetic interac-
tions. Performance of the hypergeometric probabilistic score is shown for
gene functional associations inferred from (A) protein-protein physical
interactions measured by the high-throughput yeast two hybrid (Y2H)
screen of Ito et al. [20], (B) affinity-purified complexes identified by mass
spectrometry by Gavin et al. [52], and (C) genetic interactions [43,74].
Performance with the probability score is measured cumulatively for each
successive bin of 200 interactions (A–C, red filled triangles), ranked by
probability score. Recall and precision are calculated using the reference
linkages derived from Gene Ontology ‘‘biological process’’ annotation
masking the term ‘‘protein biosynthesis’’. The Y2H core model described
in [20] (A, filled circle) is more precise than the complete data set (A, open
circle), but with reduced recall. Similarly, two different ways of inferring
binary linkages from mass spectrometry-derived protein complexes
[22]—the spoke (B, filled circle) and matrix models (B, open circle)—
show differing trade-offs between precision and recall. The set of binary
genetic interactions (C, open circle) shows very low precision for
functional inferences, although the false positive rate of genetic
interactions is generally perceived to be low; in contrast, the hypergeo-
metric probability identifies a functionally informative subset of linkages.
In general, the hypergeometric probability scores provide an excellent
ranking of interactions in each of the data sets consistent with the
linkages’ functional informativeness.
doi:10.1371/journal.pone.0000988.g002
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and the correspondingly increased probability of observing such

correlations at random.

For robust as well as sensitive co-expression linkage detection,

we introduced two new parameters to filter false positive co-

expression linkages. These filters operate by removing genes from

the co-expression analysis that fail to show a minimum ratio of

expression change (R) in a minimum number of microarray

experiments (M), thereby eliminating the genes most likely to be

unresponsive in the array set being analyzed. We optimized the

choice of these two parameters for each set of array experiments

by maximizing the area under a recall-precision curve

(Table 2).

Beyond filtering genes, we also removed entire data sets that

proved uninformative for reconstructing a functional network: We

measured the relationship between the degree of co-expression

between two genes, measured as the Pearson correlation co-

efficient (PCC) of their expression levels across the arrays under

consideration, and the likelihood of their functional association,

measured by the log likelihood of belonging to the same pathway

(LLS, see Methods) between the genes in each successive bin of

1000 gene pairs ranked in descending order by PCC. Across 18

total sets of DNA microarrays from SMD [26], containing 581

individual array experiments, we found 14 sets showed a significant

relationship (e.g., Cell cycle; Figure 3A) and 4 sets showed no

relationship (e.g., Oxidative stress with Menadione; Figure 3A),

as listed in Tables 2 and 3. Alternate measures of expression

correlation (the non-parametric Spearman rank coefficient and

mutual information measures) failed to improve performance over

PCC. Filtering the unresponsive genes as described above further

improved the relationships, as shown for an example in

Figure 3B. In order to ensure representation of housekeeping

genes, the 14 informative array sets were also concatenated into

monolithic expression vectors spanning 500 experiments and

analyzed for co-expression linkages as above. The benefits of the

divide-test-integrate method are illustrated in the improved

precision for any given coverage of genes or reference linkages,

as shown in Figure 3C on the independent MIPS protein

functional linkage reference set (excluding the term ‘‘protein

synthesis’’).

Assessment of YeastNet version 2 as a predictive

model
In total, ten types of functional genomics, proteomics, and

comparative genomics data sets are integrated into the network

(Table 4), as described in the Methods section (see the pseudo-

code for an overview of the procedure). Approximately 1,800,000

individual experimental observations were integrated into the

network model, optimizing a total of ,155 free parameters in

order to construct the network. Using a permissive scoring

threshold corresponding to the log likelihood score (LLS.0.916)

of non-core genome-wide Y2H screens [20], YeastNet v. 2

contains a total of 102,803 linkages covering 5,483 yeast proteins

(covering .95 % of validated yeast proteome).

The integrated model, along with the various sets of linkages

derived from individual data sets, was assessed on an independent

test set of gene functional linkages derived from the MIPS protein

function annotation set, calculating recall and precision of the

MIPS reference linkages (Figure 4). For this purpose, we measure

recall of genes, rather than gene pairs, in order to assess the

generality of predictions across the entire genome. The integrated

network shows high gene coverage and high precision across the

entire network. As expected, the integrated network surpasses any

individual data set for precision at a given coverage; the complete

network covers .95% of the protein-coding genes in the yeast

genome with .60% precision on the inferred linkages (i.e., at least

6 out of 10 predicted linkages are true).

We compared the overall performance of YeastNet version 2 to

that of YeastNet version 1 by recall-precision analysis on the

independent test sets. We previously defined a confident sub-

network by taking only the top 34,000 functional linkages

(covering 4,681 yeast proteins) [1] and used that for detailed

biological interpretation. We therefore selected the top 34,000

linkages of both versions of YeastNet in order to perform a fair

comparison. This subset of YeastNet v. 2 covers 4,649 yeast

proteins (.80% of the validated yeast proteome). In tests of the

MIPS functional linkage reference set that included linkages

derived using the functional category ‘‘protein synthesis’’, the

precision of the two networks is comparable, while coverage—for

both genes and reference linkages—is significantly improved for

the new network model (Figure 5A). Superiority of the new

network becomes more obvious when we mask the reference

linkages derived from the term ‘‘protein synthesis’’. Precision of

the new network is minimally influenced by masking of this single

term. In contrast, YeastNet v. 1 shows a noticeable drop in

precision, indicating a bias towards protein synthesis-related

functions. We observe the same trend using another independent

functional linkage reference set derived from KOG functional

categories (Figure 5B), with the precision of YeastNet v. 2

changing only minimally with removal of the KOG reference term

‘‘protein synthesis’’, while precision of YeastNet v. 1 drops below

v. 2. Roughly 17% of total KOG reference linkages are derived

from the annotation term ‘‘protein synthesis’’, while only 4.3% of

total MIPS linkages are, accounting for the larger effect seen on

the KOG benchmark. (The effect is also accentuated by the fact

that MIPS annotates 3,752 yeast genes, whereas KOG annotates

only 3,022.) Therefore, we conclude that the new network,

YeastNet v. 2, is a significantly improved gene functional network,

both showing higher accuracy and coverage, as well as better

generalization to a more diverse set of cellular systems.

Table 2. SMD data sets used for co-expression links (total 500
experiments)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMD category N R M

Cell cycle 83 1.4 8

Diamide treatment 8 1.6 6

Diauxic shift 19 1.4 13

DNA damage response in mec mutant 19 1.8 4

DNA damage response in WT 19 1.4 7

DTT treatment 15 1.3 10

Heat shock treatment 31 1.8 16

Nitrogen limitation 9 1.6 7

Nutrition limitation (Leu, Ura, Phosphate, Sulfate) 100 1.0 4

Osmotic shock (hyper, hypo) 26 1.2 13

Oxidative stress with HP (H2O2) 40 1.5 14

Measuring the number of mRNA-associated ribosome 42 1.3 29

RNA decay measurement 58 1.9 36

YPD stationary culture 31 1.1 20

N: the number of experiments in the set
R: minimum absolute value of log base 2 ratio of expression between treated
experiment and control
M: minimum number of microarray experiments that exceed the R threshold
doi:10.1371/journal.pone.0000988.t002..
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Another aspect of the predictive quality of a gene network

relates to an observed correlation between a gene’s tendency to be

essential [27] and its centrality in a network, measured as the

number of interactions in which the gene participates. This

correlation was initially observed for the yeast physical protein-

protein interaction network [28]. Consistent with the original

observation, the high quality physical protein-protein interactions

derived from small-scale experiments (here, collected from

bioGRID [29] and DIP [30]) show a strong correlation between

degree centrality and lethality (Spearman rank correlation (rs) =

0.94; Figure 6A). YeastNet v. 1 also showed a strong correla-

tion—slightly worse in quality than the physical interactions but

covering a higher proportion of the experimentally identified

essential genes (increasing from 85% coverage in the protein-

protein interaction network to 91% by YeastNet v. 1; Figure 6B).

One explanation for this slightly lower correlation is that linkages

in YeastNet v. 1 are enriched among genes of protein biosynthesis,

especially ribosomal proteins, because of the biased reference set.

This trend would lower the correlation, as only ,18% of yeast

ribosomal genes (defined by GO cellular component annotation)

are essential, similar to the general background proportions of

essential genes [27]. Consistent with this notion, we found that

YeastNet v. 2 shows a higher correlation between degree centrality

and lethality (Spearman rank correlation (rs) = 0.95) while

covering nearly all (99%) of the experimentally identified essential

yeast genes (Figure 6C). This indicates that the optimized

learning methods, considering functional bias, produce a more

globally predictive network model.

Experimental validation of the top ribosome

biogenesis prediction, PUF6
In addition to the above computational validation, we also

experimentally validated predictions arising from the new gene

network. Using the new network, we predicted new genes to be

involved in the process of ribosomal biogenesis, which is
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Figure 3. Optimizing the inference of linkages from mRNA co-
expression. (A) Examples of a functionally informative DNA microarray
data set and a non-informative one. Each set is illustrated as a scatter
plot showing the log likelihood of functional association for each
successive bin of 1,000 gene pairs (circles) ranked by decreasing
Pearson correlation coefficient between expression vectors derived
from that array set. The set of microarray data measuring oxidative
stress responses following Menadione treatment [75] (filled circles) does
not show a significant relationship between co-expression and the
likelihood of functional association. In contrast, the set of cell cycle time
course experiments [76] (open circles) shows a strong relationship. The
effect of filtering genes using the parameters M and R is illustrated in
(B). A data set of genes changing expression during the diauxic shift

r

[77] (open circles) shows a noisy relationship between co-expression
and the likelihood of functional association, especially for gene pairs
with the highest Pearson correlation coefficients. However, by in-
troducing the two threshold parameters, the relationship improves
(filled circles), in particular decreasing variance considerably and
improving the corresponding regression model. (C) The divide-test-
integrate strategy [1] for inferring linkages, shown here calculated
across all 500 microarray experiments (empty triangles) considerably
outperforms analysis of the expression vectors constructed by
concatenating the 500 experiments (filled circles). Precision is measured
using reference linkages derived from MIPS functional annotation,
masking the term ‘‘protein synthesis’’, and recall is calculated for either
reference linkages or total yeast genes (inset).
doi:10.1371/journal.pone.0000988.g003

Table 3. SMD data sets tested but rejected (total 81
experiments)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SMD category N

Calcium treatment 24

Oxidative stress with Menadione 30

Salt treatment 18

Zinc treatment 9

N: the number of experiments in the set
doi:10.1371/journal.pone.0000988.t003..
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a fundamental process critical for cells and widely conserved across

eukaryotes. New ribosomal biogenesis genes were inferred by

identifying close network neighbors to the known ribosomal

biogenesis genes. Specifically, we generated a seed set of known

ribosome biogenesis genes based on their Gene Ontology biological

process annotation (n = 238 yeast genes annotated by the terms

‘‘ribosome assembly’’, ‘‘rRNA’’, or ‘‘35S’’), then prioritized their

network neighbors by the sum of their LLS scores to genes of the

seed set. This list of genes was filtered to remove known ribosomal

proteins. Table 5 lists the top 5 predictions. Two of the top 5 genes,

CIC1 and ESF2 have been verified in the literature [31,32] but had

not yet been included in the ribosome biogenesis annotation set we

employed, and thus can be considered true predictions already

verified by published studies. Moreover, these predictions are also

supported by multiple lines of evidence including inferred functional

linkages based on high-throughput data (e.g., co-expression and

mass spectrometry analysis; Table 5). All five genes are known to be

localized to the nucleolus [33], strongly supporting a possible role in

ribosome biogenesis.

We selected the top-ranked prediction, PUF6, for experimental

validation. PUF6 encodes an RNA-binding protein previously

known to be involved in mating-type determination via its

translational repression of ASH1 mRNA prior to ASH1 mRNA

localization to the bud tip [34]. While previous computational

evidence associates PUF6 with ribosomal biogenesis [35], there is

not yet direct experimental support for its involvement. We

therefore experimentally tested PUF6 for its participation in

ribosomal biogenesis.
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Figure 4. Summary of benchmarking for the YeastNet v. 2 integrated functional gene network, along with the functional linkage sets derived
from the ten individual types of data. Precision and recall of yeast genes are calculated using the unbiased MIPS functional linkage reference set, as
in Figure 3C. Gene pairs in each set were ranked by LLS scores, then cumulative precision and recall were calculated for each successive bin of 1,000
gene pairs (each symbol indicates a bin). The confidence measures for each individual data type can be seen to rank the gene pairs effectively.
YeastNet v. 2 shows high overall performance, with the integration of the heterogeneous genomics data improving both reliability and completeness
of the overall model.
doi:10.1371/journal.pone.0000988.g004

Table 4. Ten genomics data types incorporated into YeastNet version 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Linkage set Raw data sources N E

Co-citation 29,135 PubMed abstracts for S. cerevisiae 3,605 29,483

Co-expression 500 S. cerevisiae microarray experiments from Stanford Microarray Database [26] 2,923 31,543

Gene Neighbor BLAST hits for 133 completely sequenced archaeal and bacterial genomes 1,098 4,961

Genetic Interaction MIPS genetic interactions and large-scale synthetic lethal screening [74] 3,556 12,538

Affinity purified complex mapping by mass
spectrometry

Three large-scale mass spectrometry analyses of affinity purified complexes [52–54] 3,368 31,931

Phylogenetic Profile BLAST hits for 117 completely sequenced bacterial genomes 351 1,050

Rosetta Stone proteins BLAST hits for 149 completely sequenced genomes 801 856

Literature curation Protein interactions supported by small scale experiments collected by manual literature
curation, and deposited into BioGRID [29] and DIP [30]

3,390 11,728

Inferred interaction from protein tertiary Structure Prediction of physical interaction based on protein tertiary structure data [72] 1,092 3,405

High-throughput yeast 2 hybrid Five large-scale yeast 2 hybrid screens [20,21,55–57] 1,792 2,055

N : Total number of genes incorporated into the integrated YeastNet version 2
E : Total number of linkages incorporated into the integrated YeastNet version 2
doi:10.1371/journal.pone.0000988.t004..
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We might expect yeast strains defective in ribosomal biogenesis

to show a slow growth phenotype; we tested a puf6D deletion strain

[36] and indeed observed significant growth retardation compared

to the wild-type strain when cultured at 20˚C (Figure 7A). We

then analyzed the polysome profile of the deletion strain in order

to assess defects in ribosome processing consistent with a biogenesis

defect. We observed an abnormal decrease in the ratio of 60S/40S

ribosomal subunits and detected the presence of halfmers in the

puf6D deletion strain (Figure 7B). Such halfmers—shoulders on

the 80S and polysome peaks—arise from mRNA bound by an

extra 40S subunit stalled at the AUG initiation codon and are

characteristic of 60S subunit biogenesis defects and blockage of

translation initiation at the 60S subunit joining stage (e.g., [37–

39]). Both the decrease in 60S subunit abundance relative to 40S

and the presence of halfmers indicate a probable role of PUF6 in

60S ribosomal subunit biogenesis. We further tested the

participation of PUF6 in 60S biogenesis by performing Western

blot analysis on an epitope-tagged version of the Puf6 protein [40].

We observed the epitope-tagged Puf6 protein to co-sediment in

a sucrose gradient with the 60S ribosome in a fashion similar to

the known 60S ribosome biogenesis factor Nmd3p [38]

(Figure 7C). Therefore, the top network prediction for proteins

most likely to participate in ribosome biogenesis could be

experimentally confirmed. In all, 3 of the top 5 predictions could

be directly confirmed, with the remaining 2 highly likely given

their nucleolar localization.

Conclusions
In this study, we present several optimizations that significantly

improve the predictive power of a probabilistic functional gene

network of yeast. There are three major aspects worth noting.

First, our current functional genomics knowledge is severely

biased. This bias leads to biased learning unless appropriately

taken into account, as the effect of reference linkages from the

dominant GO term ‘‘protein biosynthesis’’ is quite strong

(Figures 1 and 5). Second, physical protein interaction and

genetic interaction data can be assigned scores that allow, on a per

interaction basis, for fine-grained, continuous valued confidence

measures. The score that we employ, based on the hypergeometric

probability, is simple and robust, and works across a variety of

different experimental techniques, and would therefore even be

appropriate as a final confidence score directly out of large-scale

experimental assays (e.g., as in [41]). Introduction of this score

significantly improves the performance of these data in deriving

the probabilistic gene network. Third, introducing two additional

parameters into the analysis of mRNA co-expression linkages

significantly decreases the number of false positive linkages while

simultaneously decreasing the variance in the quality of the

derived linkages (Figure 3B). Incorporation of each of these

optimizations into YeastNet v. 2 significantly improves the quality

of the model, improving precision and recall on independent test

sets and increasing generality of the model for more diverse

cellular systems. We expect that the protocol we present for

calculating the network is general and could be applied to other

organisms essentially directly as described.

We describe applications of the gene network for functional

prediction (prediction of ribosomal biogenesis genes) and pre-

diction of essential genes. In order to perform similar analyses of

YeastNet v. 2, we have established a web site (http://www.

yeastnet.org) where the network can be downloaded in full. We

anticipate posting future updates of the network to this site as new

data sets become available.

Figure 5. YeastNet v. 2 outperforms YeastNet v. 1 [1], as measured by precision and recall of either genes or reference linkages on independent
reference sets. (A) shows performance on the MIPS functional linkage reference set, with or without masking the term ‘‘protein synthesis’’, while (B)
shows performance on reference linkages derived from KOG functional categories. For both reference sets, we observe significantly improved recall
by YeastNet v. 2 for both yeast genes and reference linkages. The effect of the annotation ‘‘protein synthesis’’ is revealed by a significant drop of
precision in YeastNet v. 1 but not v. 2 after masking the term during benchmarking. The higher fraction of linkages derived from ‘‘protein synthesis’’
in KOG (,17% of total linkages) than MIPS (,4% of total MIPS linkages) explains the apparently higher precision of v. 1 than v. 2 when including the
term in (B), resulting in a correspondingly larger drop in precision of v. 1 when the term is masked. All analyses in (A) and (B) are for the 34,000 most
confident linkages of each network.
doi:10.1371/journal.pone.0000988.g005
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MATERIALS AND METHODS

Saccharomyces cerevisiae gene set
YeastNet version 2 is based on the verified 5,794 protein encoding

open reading frames (ORFs) of the yeast genome downloaded

from Saccharomyces cerevisiae Genome Database (SGD) [42] on

March 2005. All linkages and calculations of genome coverage are

based on this gene set.

Reference and benchmark sets
In order to benchmark the assigned functional linkages in this

study, three different reference sets were used. As a major

reference set for benchmarking, we used the Gene Ontology (GO)

annotation, downloaded from the Saccharomyces cerevisiae Genome

Database (SGD) [17] on March 2005. The GO schema lists three

hierarchies of function describing ‘‘biological process’’ (i.e.,

pathways and systems), ‘‘molecular function’’ (i.e., biochemical

activities), and ‘‘cellular component’’ (i.e., subcellular localization).

For training the network, we used the Saccharomyces cerevisiae GO

‘‘biological process’’ annotation, which contains up to 14 different

levels of information under the term ‘‘biological process’’ within

the hierarchy. We used terms belonging to levels 2 through 10. We

also excluded the term ‘‘protein biosynthesis’’ because it annotates

so many genes as to significantly bias the benchmarking. To

construct the reference set of linkages, we considered all gene pairs

as functionally linked if they shared annotation from this set of GO

terms. These pairs comprised our positive reference set for training

network models. Negative examples were constructed as pairs of

annotated genes not sharing any annotation terms, i.e., all other

links among this annotated set of genes.

Specifically, 66,174 positive reference pairs were employed,

representing all gene pairs sharing any GO biological process

terms between levels 2–10 (except for the biased term ‘‘protein

biosynthesis’’). These pairs are provided on the supporting web site

(http://www.yeastnet.org). All other pairs of these genes were

implicitly defined as the negative reference pairs. For example, the

genes NOP1 and SIK1 represent a positive example, sharing the

GO terms ‘rRNA modification’, ‘35S primary transcript pro-

cessing’, ‘processing of 20S pre-rRNA’. The genes BUD5 (‘bud site

selection’, ‘pseudohyphal growth’, ‘small GTPase mediated signal

transduction’) and NOG1 (‘ribosome-nucleus export’) are annotat-

ed, but do not share terms, and represent a negative example.

We also employed two independent functional linkage reference

sets for testing functional linkages. One was derived from the

Munich Information Center for Protein Sequences (MIPS) [43]

protein function annotation. We used the 11 major categories

from the top level MIPS functional category annotation. The

second reference set was derived from the clusters of orthologous

group (COG) annotation [44], which is based on reconstructing

homologous groups of proteins in such a manner as to

considerably enrich for orthologous proteins within each group,

with the functions of genes assigned within 23 broad categories

(such as ‘‘Transcription’’ and ‘‘Signal Transduction Mechanisms’’)

based on the well-annotated proteins with each COG. We use the

version of COG that includes multicellular eukaryotic genomes

(named eukaryotic orthologous groups, or KOG) [45]. Positive

and negative linkage sets were constructed from each of these

reference sets as for the GO set.

Benchmarking and integrating heterogeneous

functional genomics data
Different types of genomics data sets differ considerably in their

utility for inferring functional linkages. We standardized the
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Figure 6. YeastNet v. 2 shows improved correlation between gene
centrality and lethality. Each plot presents the correlation (for a given
network) between network centrality, calculated as the number of
interactions per gene normalized by the maximum observed value,
versus the essentiality of the genes, calculated as the fraction of
essential yeast genes [27] for each successive bin (open circle) of 100
genes ranked by decreasing degree centrality. (A) shows the trend for
a high quality protein-protein physical interaction network derived from
DIP [30] and bioGRID [29], (B) shows the trend for YeastNet version 1
(34,000 most confident linkages only), and (C) shows the trend for
YeastNet version 2. For both functional networks, degree centrality is
weighted by the interaction LLS scores (i.e., calculated as the sum of LLS
scores for a gene, divided by the maximum sum of LLS scores observed
in the network). The degree of correlation is measured as the Spearman
rank correlation coefficient (rs).
doi:10.1371/journal.pone.0000988.g006
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contributions from heterogeneous genomic data sets by scoring

using the log likelihood score (LLS) scheme previously described in

[1].

In this scheme, the score for each data set (or subset; e.g., a set of

gene pairs co-expressed to a certain extent) is calculated as

LLS~ ln
P(I jD)=P(*I jD)

P(I)=P(*I)

� �
,

where P(I|D) and P(,I|D) are the probabilities for gene pairs

linked by the given data (D) to share (I) or not share (,I)

functional annotation, respectively, and P(I) and P(,I) represent

the prior probabilities of sharing/not sharing functional annota-

tion, respectively. For estimating the conditional probabilities

P(I|D) and P(,I|D), we calculated the fraction of annotated gene

pairs in the data set being analyzed that were found in the positive

or negative reference sets, respectively. P(I) and P(,I) were

calculated as the overall frequencies of positive reference pairs

(annotated gene pairs sharing annotation) and negative reference

pairs (annotated gene pairs not sharing annotations). Thus, an LLS

score of zero indicates that the data is no more informative than

random expectation for discovering functional linkages; increas-

ingly positive LLS scores indicate increasing information in the

data set for discovering functional linkages.

To avoid overtraining, we employed 0.632 bootstrapping

[46,47] for all LLS calculations. 0.632 bootstrapping has been

shown to provide a robust estimate of classifier accuracy, out-

performing cross-validation [48], especially for very small data sets

(e.g., see [49]), and is thus appropriate even for more poorly

annotated genomes. Unlike cross-validation, which uses sampling

Table 5. Top five predictions of new ribosomal biogenesis genes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rank Gene Evidence GO description

1 PUF6* CX, MS, LC nucleus, nucleolus, regulation of transcription, mating-type specific

2 CIC1* CX, MS, LC proteasome complex (sensu Eukaryota), nucleolus, protein catabolism

3 KRE33 MS, CX, LC nucleolus

4 ESF2* CX, MS, LC, GT nucleolus, cytoplasm

5 BFR2 CX, MS, LC, YH nucleolus, ER to Golgi transport

*Experimentally validated by this study and others.
CX: co-expression, GT: genetic interaction, LC: literature curation, MS: mass spectrometry complex analysis, YH: genome-scale yeast two hybrid
doi:10.1371/journal.pone.0000988.t005..
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Figure 7. Experimental validation of the participation of PUF6 in 60S ribosomal subunit biogenesis. (A) A puf6D deletion strain [27] shows
a marked conditional growth defect compared to wild-type (WT) cells when grown at 20̊ C, accompanied by (B) a decrease in the ratio of 60S/40S
ribosomal subunits and the formation of halfmer polysomes, as measured by monitoring absorbance at 254 nm of clarified yeast cell lysate separated
on a 7 to 47 % sucrose density gradient. Additional evidence for the participation of PUF6 in 60S biogenesis can be seen (C) in the co-sedimentation
of the TAP-tagged Puf6 protein [40] with the 60S ribosomal subunits, as measured by Western blotting of lysates separated by sucrose density
gradient. TDH1 encodes a cytoplasmic protein with no known association with ribosomal subunits, serving as a negative control. NMD3 encodes
a known 60S biogenesis factor [38], serving as positive control. Puf6-TAP shows a similar sedimentation profile as Nmd3-TAP, supporting the role of
PUF6 in 60S ribosomal subunit biogenesis.
doi:10.1371/journal.pone.0000988.g007
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without replacement for constructing test and training data sets,

0.632 bootstrapping employs sampling with replacement, con-

structing the training set from data sampled with replacement and

the test set from the remaining data that weren’t sampled. Each

linkage has a probability of 1-1/n of not being sampled, resulting

in ,63.2% of the data in the training set and ,36.8% in the test

set [50]. The overall LLS is the weighted average of results on the

two sets, equal to 0.632*LLStest + (1-0.632)*LLStrain.

For data sets in which each gene pair is associated with

a continuous score (e.g., correlation coefficient, mutual informa-

tion, etc.), we calculated LLS scores for bins containing equal

numbers of gene pairs. Those LLS scores and their corresponding

data scores (the mean data scores for a bin) were used to calculate

regression models (see Figure 1B for examples), which were then

used to map individual data intrinsic scores to LLS scores in

a continuous manner, allowing calculation of LLS scores for gene

pairs lacking annotation. In general, quadratic curve fits tended to

overscore gene pairs with the highest data-intrinsic scores (e.g.,

those with the highest correlation coefficients) during the

extrapolation to unannotated genes; sigmoidal fits provided

equivalent quality regression models, but were more conservative

for the highest scoring cases.

For integrating LLS scores from different data sets, we employed

the weighted sum method [1] in order to take into account

correlations among the data sets. The published weighted sum

method was modified by using linearly decaying weights for

additional datasets, and by including a new free parameter, T,

which represents a minimum LLS threshold on the data sets being

integrated. The weighted sum (WS) integrating multiple likelihood

scores of functional association for a gene-pair was calculated as:

WS~LLS0z
Xn

i~1

LLSi

D:i
, for all LLS§T ,

where LLS0 represents the maximum LLS score for a given gene

pair, D is a free parameter determining the decay rate of the

weight for secondary evidence, and i is the rank order index of LLS

scores, ranking gene pairs starting from the second highest LLS

with descending magnitude for all n remaining LLS scores. For

integration, we consider only LLS scores above the threshold T,

thereby excluding noisy low scoring linkages. The free parameter

D ranges from 1 to +‘, and is optimized to maximize overall

performance (measured as the area under a recall-precision curve)

of the integrated model. As the optimal value of D approaches +‘,

WS approaches LLS0, and lower scoring LLS scores do not provide

any additional likelihood, as appropriate when all data sets are

completely dependent. We independently explicitly test the

performance of a naı̈ve Bayesian integration of the LLS scores

(here, simply the sum of the LLS scores for a given gene pair), then

select the integration approach maximizing the area under a plot

of LLS versus gene pairs incorporated in the network.

Regarding the choice of linear versus exponential decay of

confidence in secondary evidence, we observe better performance

(measured by recall-precision analysis) using the linear model

when accompanied by more extensive secondary evidence and

improved filtering of false positive linkages prior to integration. In

YeastNet v.1, more low-scoring false-positive linkages were

incorporated, and their contributions as secondary evidence were

more strongly down-weighted under the exponential model.

However, in YeastNet v. 2, new filters (in particular, new

probabilistic scores for protein interactions and the introduction

of thresholds for DNA microarray data) down-weight or remove

many false positive associations prior to integration. The addition

of new data sets also has the effect of increasing the quantity of

secondary evidence. Thus we empirically observe that as

secondary lines of evidence become more available and in-

formative, the linear dependency model performs better.

Inferring gene functional linkages from mRNA

expression data
Gene functional linkages were inferred from mRNA expression

data deposited in the Stanford Microarray Database (SMD) by

July 2005 [26]. Co-expression relationships were measured as the

Pearson correlation coefficient (PCC) between pairs of genes’

mRNA expression vectors, accepting only PCC values statistically

significant at the 99% confidence level by t-test. From the set of

gene pairs with significant PCC scores, we excluded pairs with

cDNA sequence homology (defined as a BLAST E-value,1024

and percentage nucleotide sequence identity .70% over the

aligned regions [51]) in order to reduce false positive co-expression

linkages caused by cross-hybridization on the DNA microarrays.

As demonstrated previously [1], overall recall/precision of

expression-derived linkages can be improved by analyzing subsets

of arrays independently, rather than as a single composite

expression vector. We tested a total of 581 DNA microarray

experiments comprising 18 sets, as defined by SMD (Tables 2
and 3). We found that 14 SMD sets, containing a total of 500

array experiments, exhibited a significant correlation between

PCC and the log likelihood score; we considered only these data

sets further.

We introduced two additional parameters to improve co-

expression inferences: a threshold for the minimum observed

change in mRNA levels across the set of array experiments (R in

Table 2), and a threshold for the minimum number of microarray

experiments with expression values greater than R (M in Table 2).

Thus, only genes that are differentially expressed by at least R-fold

(in either direction) on at least M microarrays in the given data set

will be considered for co-expression linkages. These parameters

considerably reduce the linkage false positive rate by removing

genes that do not vary across the set of arrays being analyzed,

under the premise that genes that are expressed at a constant level

across the tested conditions are not likely to be relevant to the

conditions of the experiments or to participate in strong co-

expression relationships. These filters therefore remove false

positive linkages derived from experimental noise and drift in

otherwise unchanging baseline expression levels. We optimized the

two thresholds for each set of SMD arrays, maximizing the area

under a curve plotting the number of genes incorporated in the

inferred linkages versus cumulative log likelihood score of the

linkages (Table 2).

In order to include otherwise robust co-expression linkages

missed by these analyses, we also concatenated all 500 experiments

derived from the 14 selected SMD data sets and derived co-

expression linkages from these concatenated expression vectors.

These linkages plus those from each of the 14 SMD subsets were

integrated by the weighted sum method.

Inferring gene functional linkages from

experimental protein-protein interaction data
Physical protein-protein interactions (PPI) and genetic interactions

(GI) were collected from the Database of Interacting Proteins

(DIP) small-scale experiment set (downloaded March 2003) [30],

BioGRID (downloaded on June 2006) in which all interactions are

supported by literature curation [29] and literature collection by

MIPS [43]. These interactions are highly confident, because

genetic interaction screens inherently provide low false-positive
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rates (Type I errors), and all physical interactions in these sets are

derived from small-scale studies. Additional physical interactions

were collected from published genome-scale screens using mass

spectrometry analyses of affinity-purified protein complexes [52–

54] or high throughput yeast two hybrid (Y2H) assays [20,21,55–

57].

We applied a quantitative error model developed for PPI data

sets [41,58] in order to assign probabilistic confidence scores to

each PPI or GI gene pair. Instead of modeling simple binary bait-

prey interactions for yeast two hybrid assays, inferred binary

interactions from mass spectrometry analysis of affinity-purified

protein complex [22], or binary genetic interactions, we calculated

the hypergeometric probability of interaction between two

proteins by random chance, assigning a probability (p-value) to

the pair as:

p(#interactions§kjn,m,N)~
Xmin (n,m)

i~k

p(ijn,m,N),

where

p(ijn,m,N)~

n

i

 !
N{n

m{i

 !

N

m

 ! ~

n! N{nð Þ!m! N{mð Þ!
n{ið Þ!i! m{ið Þ! N{n{mzið Þ!N!

,

and where k is the number of interactions observed between

proteins A and B in the complete interaction data set (e.g.,

depending on the data set, counting the number of yeast two-

hybrid interactions, mass spectrometry co-purifications, or genetic

interactions involving both A and B), n is the number of observed

interactions involving protein A, m is the number of observed

interactions involving protein B, and N is total number of

experiments with $1 interaction measured (e.g., depending on

the data set, counting the number of total detected yeast two-

hybrid interactions, the number of pull-down experiments with at

least one interaction prey identified by mass spectrometry analysis,

or the number of total detected genetic interactions). Using this

measure, interactions between proteins with many different

interacting partners (i.e., frequent interactors) have a high

probability of occurring by random chance, indicating either

promiscuous or strongly context-dependent interactions. Given

probable association with many other partners, such cases

therefore receive a correspondingly low confidence in the gene

pair’s specific interaction with each other.

Inferring gene functional linkages from genome

context
We employ three genome context methods for inferring functional

linkages from genome sequences: phylogenetic profiling (PG) [59–

61], the Rosetta Stone protein (RS) (or gene-fusion) method

[59,62–64], and gene neighbors [3,65,66]. Linkages for each

method were derived from analysis of a database of 149 genomes

(117 bacteria, 16 archaea, and 16 eukaryotes).

Briefly, each yeast protein sequence was compared to every

other sequence using the program BLASTP with default settings

[67]. Rosetta Stone linkages and gene neighbor linkages were

calculated from these comparisons as in [68] and [3], respectively.

Phylogenetic profiles were constructed from these comparisons

and analyzed as in [69] with the following modifications. We

found the profiles corresponding to major phylogenetic groups of

organisms varied widely in their utility for deriving functional gene

associations. In particular, inclusion of eukaryotic and archaeal

genomes did not significantly improve performance. Instead, we

found the best performance—measured as the performance

maximizing the area under a plot of LLS versus the number of

genes participating in the linkages—by inferring functional

linkages from a profile constructed only from bacterial genomes.

For discretizing BLAST E-values prior to calculation of mutual

information between phylogenetic profiles, we binned by equal

numbers of examples rather than by equal intervals of E-values,

accounting for the non-uniform distribution of BLAST E-values.

We observed the best results from using 3 bins.

Inferring gene functional linkages from literature

mining
We identified functional linkages by mining the scientific literature

(specifically, Medline abstracts) using the co-citation approach

[70,71] as in [1]. We analyzed a set of N = 29,135 Medline

abstracts that included the word ‘‘Saccharomyces cerevisiae’’ in the

abstract for perfect matches to either the standardized names or

common names (or their synonyms) of 5,794 yeast genes.

Inferring gene functional linkages from protein

tertiary structure
Functional linkages were also inferred from physical interactions

predicted between proteins pairs based upon modeling their 3-

dimensional structures into X-ray crystal structures of homologous

protein complexes. We used the tertiary structure predictions

reported by Aloy and Russell [72], using the reported P-values as

the internal measure of confidence in the interactions.

Summary of integration
The final integrated gene network incorporates 10 fairly distinctive

types of data: 1) small-scale protein physical interactions from

literature curation, 2) co-citation evidence, 3) mRNA co-

expression, 4) genetic interactions, 5) protein complexes derived

from affinity-purification followed by mass spectrometry, 6) high-

throughput yeast two hybrid analyses, 7) gene neighbors, 8)

phylogenetic profiles, 9) Rosetta Stone protein linkages, and 10)

inferred interactions from tertiary structural modeling (Table 4).

The following pseudo-code summarizes the benchmarking and

integration of these data:

1. For DNA microarray data

1.1. For each set of yeast DNA microarrays (corresponding to

all arrays from a given category defined in SMD)

1.1.1. Calculate the mean-centered Pearson correlation

coefficient (PCC) between all pairs of genes’

expression profiles

1.1.1.1. Calculate (by t-test) the minimum correlation

coefficient for 99% confidence given the # of

experiments in the set. For further analyses,

consider only pairs meeting this criterion.

1.1.1.2. Eliminate all potential cross-hybridization pairs

defined by cDNA BLAST score (E-value,1024

and nucleotide sequence identity .70%), then

evaluate the regression between PCC and the

log likelihood score (LLS) of sharing Gene

Ontology biological process annotations
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1.1.1.2.1. Reject set if no relationship is evident

between PCC and LLS

1.1.1.3. Filter genes considered in the correlation

analysis by requiring each gene to exhibit

significant expression changes (e.g., .R-fold,

typically ,1.5-fold) in at least M microarray

experiments across the data set. Optimize these

2 parameters by recall-precision analysis, max-

imizing the area under a plot of LLS versus # of

genes participating in the linkages.

1.1.1.4. Fit regression (typically sigmoid) between PCC

and LLS, considering only genes passing the

optimized filtering criteria (1.1.1.3) and only

gene pairs whose correlation exceeds the 99%

confidence level (1.1.1.1).

1.1.1.5. Using regression fit, assign LLS scores to all

gene pairs whose correlation exceeds the 99%

confidence level, including unannotated gene

pairs.

1.1.1.6. Select minimum LLS threshold from inflection

point of regression model. Retain only LLS

scores/gene pairs surpassing threshold.

1.2. Consider all sets of yeast DNA microarrays passing the

filter of 1.1.1.2.1 as a single composite set and analyze as in

1.1 and subsections. (This step helps reconstruct linkages

for globally co-expressed genes, such as housekeeping

genes.)

1.3. Integrate LLS scores from all analyses of DNA microarrays

1.3.1. Calculate the weighted sum of LLS scores for each

gene pair across the analyses of DNA microarray

sets

1.3.2. Optimize the choice of the weighting parameters

D and T using recall-precision analysis by

maximizing the area under a plot of LLS versus

# of genes participating in the linkages. Compare

to naı̈ve Bayesian integration, and choose from

weighted integration versus naı̈ve Bayes by recall-

precision analysis.

2. For each set of protein-protein physical interaction data (mass

spectrometry analyses of purified complexes, genome-scale

yeast 2 hybrid analysis, small-scale data collected by literature

curation) and genetic interaction data (collected by literature

curation)

2.1. Fit regressions between LLS and data-intrinsic scores

(–log(hypergeometric probability of interaction))

2.2. Using regression fit(s), assign LLS scores to all interact-

ing gene pairs, including unannotated gene pairs

2.3. Integrate LLS scores from homogeneous types of

detection methods using weighted sum method (e.g.,

integrate LLS from three major mass spectrometry

analysis of complex [52–54] into a single integrated set

of gene linkages from all mass spectrometry analyses),

optimizing D and T parameters by recall-precision

analysis. Compare to naı̈ve Bayesian integration, and

choose from weighted integration versus naı̈ve Bayes by

recall-precision analysis.

3. For co-citation, phylogenetic profiles, Rosetta-stone proteins,

gene neighbors data, and inferred protein interactions from

protein tertiary structure

3.1. Fit regressions between LLS and data-intrinsic scores (–

log(random probability of co-citation), mutual informa-

tion of phylogenetic profiles, (–log(random probability

of gene-fusion), –log(random probability of being gene

neighbors, and original P score as in [72], respectively)

3.2. Using regression fit(s), assign LLS scores to all co-cited

(or co-inherited or co-neighboring) gene pairs, including

unannotated gene pairs

4. Integrate all linkages using the weighted sum method,

optimizing the choice of D and T parameters by recall-

precision analysis. Compare to naı̈ve Bayesian integration, and

choose from weighted integration versus naı̈ve Bayes by recall-

precision analysis.

Experimental validation of yeast ribosomal

biogenesis genes
Yeast strains were cultured in YPD (1% yeast extract, 2% peptone,

2% dextrose) at either 20uC or 30uC. The puf6D haploid MATa

deletion strain [36] and PUF6, NMD3, and TDH1 TAP-tagged

haploid MATa strains [40] were obtained from Open Biosystems.

For polysome profile analysis, yeast strains were cultured to

OD600 0.3–0.5, and 100 mg/ml cycloheximide (Sigma) was added

to each culture. Cultures were immediately cooled with ice, and all

subsequent steps were performed on ice or at 4uC. Each cell pellet

was washed once with lysis buffer (20 mM Tris pH 7.4, 20 mM

KCl, 5 mM MgCl2, 100 mg/ml cycloheximide, 12 mM b-

mercaptoethanol). The cells were pelleted, resuspended in one

volume lysis buffer with protease inhibitors (2 mg/ml leupeptin,

2 mg/ml aprotinin, 1 mg/ml bestatin, 1 mg/ml pepstatin A;

obtained from MP Biomedicals Inc.), and lysed with glass beads.

Crude lysates were centrifuged at 15,000g for 10 minutes. Fifteen

OD260 units of each supernatant were loaded onto continuous

12 ml 7 to 47% sucrose gradients in lysis buffer without protease

inhibitors, as in [73]. After a 2.5-h spin at 40,000 rpm in

a Beckman SW40 rotor, the sucrose gradient was fractionated and

absorbance at 254 nm was measured. For TAP-tagged strains,

fractions were collected, and proteins were precipitated with 10%

cold trichloroacetic acid and washed with 100% cold acetone.

For analysis of co-sedimentation with ribosomes, precipitated

proteins were resuspended in 20 ml Laemmli buffer, and 2 ml of

each sample was deposited onto a nitrocellulose membrane. TAP-

tagged proteins were detected with a PAP antibody (Rockland

Immunochemicals, Inc.) and electrochemiluminescence (ECL; GE

Amersham).
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